Estimation and prediction for spatial generalized linear mixed models using high order Laplace approximation
نویسندگان
چکیده
منابع مشابه
Estimation and Prediction for Spatial Generalized Linear Mixed Models Using High Order Laplace Approximation
Estimation and prediction in generalized linear mixed models are often hampered by intractable high dimensional integrals. This paper provides a framework to solve this intractability, using asymptotic expansions when the number of random effects is large. To that end, we first derive a modified Laplace approximation when the number of random effects is increasing at a lower rate than the sampl...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملOn estimation and prediction for spatial generalized linear mixed models.
We use spatial generalized linear mixed models (GLMM) to model non-Gaussian spatial variables that are observed at sampling locations in a continuous area. In many applications, prediction of random effects in a spatial GLMM is of great practical interest. We show that the minimum mean-squared error (MMSE) prediction can be done in a linear fashion in spatial GLMMs analogous to linear kriging. ...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملLaplace approximation for measurement error correction in generalized linear (mixed) models
The Laplace approximation is applied to measurement error models when the likelihood function involves high dimensional integrals. The cases considered are generalized linear models with multiple covariates measured with error and generalized linear mixed models with measurement error in the covariates. The asymptotic order of the approximation and the asymptotic properties of the Laplace-based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2011
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2011.05.008